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Two-fluid modeling of two-phase flow may yield a system of partial differential equations 
having complex characteristics; this results in a mathematically ill-posed initial-value 
problem. Despite the fact that no finite-difference method for solving such a problem can 
be- stable in the usual sense, finite-difference solution of two-fluid models is in widespread 
use. We investigate the numerical behavior of one such set of difference equations, derive 
conditions under which solutions appear to be well behaved, and offer a physical inter- 
pretation. 

Considerable attention has recently been given to calculation methods for transient 
multifluid flow problems. A semi-implicit multifluid Eulerian finite-difference method 
was first proposed by Harlow and Amsden [l, 21, and has since been improved by 
Liles and Reed [3] with variations by Stewart [4] and Solbrig et al. [5] among others. 
Multifluid modeling and numerical calculation appear to have important applica- 
tions. One is in reactor safety analysis, where effort is being made to better understand 
and predict two-phase flow behavior through the potentially more rational approach 
of multifluid modeling [6, 71. By two-fluid equations we shall mean a multifluid 
model for two-phase flow consisting of mass, momentum, and energy conservation 
equations for each of the phases under a common pressure field, with nondifferential 
exchange terms to describe the exchanges of mass, momentum, and energy between 
phases. 

As is by now well known [B-lo, 191, this system of six partial differential equations 
(for one space dimension) has the mathematical property that its six characteristic 
roots are not all real, as would be the case for a hyperbolic system. Instead, two of the 
roots are complex. This implies that solutions of an initial-value problem for the 
equations do not depend continuously on initial values, so the initial-value problem is 
not well posed [ll, p. 80; 121. Some researchers have concluded that the differential 
equations should be modified to render all characteristic roots real [8, lo]. Never- 
theless, numerous approximate finite-difference calculations are being carried out 
with the several numerical methods in existence for two-fluid equations without 
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observable symptoms of ill-posedness. It is not our intent in this paper to decide what 
approach is best. Rather, we wish to understand why, and more precisely under what 
conditions, a particular popular set of two-fluid finite-difference equations can be 
expected to give reasonable numerical results in spite of the ill-posedness of the differ- 
ential equations. 

For simplicity, we shall limit ourselves in this paper to two-fluid equations in one 
space dimension for mass and momentum conservation only; these four equations 
contain the essential features for our purposes. The first section of this paper will 
review known facts, including the characteristic roots of the two-fluid equations, 
and an elementary stability analysis for a single transport equation with complex 
characteristic velocity. We indicate our intent to avoid using the word stable in the 
usual mathematical sense, but to consider a special definition of well-behaved solu- 
tions based on physical intuition. In the second section we examine the numerical 
behavior of two-fluid finite-difference equations without interphase exchange terms, 
finding instability due to complex characteristics. However, the shortest wavelengths 
represented in the finite-difference solution, which are low multiples of the mesh 
spacing dz, usually are well behaved; this fact is significant because in a complicated, 
realistic transient calculation longer-wavelength instabilities may be difficult to detect. 
In the following section we show how some longer wavelengths may also be well 
behaved if the two-fluid model contains a large enough momentum exchange, and if 
dz is not too small. An approximate criterion relating momentum transfer and mesh 
size is presented, which admits a meaningful physical interpretation. We then discuss 
briefly the results of some numerical calculations; the final section summarizes our 
results. 

BACKGROUND 

We begin with the four partial differential equations of mass and momentum 
conservation of the two-fluid model. These equations might describe isothermal two 
component two-phase flow in a straight pipe, for example. 

2 + v * ap,u, = 0, 

w Tta) pz + v * (1 - CL) pruz = 0, 

ap* [ + + u,v v.iv] + aVP = quz - %A 

0) 

(2) 

(1 - a) pr [4$ + UlV .UJ] + (1 - a) VP = K(u, - 4. (4) 

The right sides of the momentum equations are equal and opposite interphase momen- 
tum transfer terms in a general form used by several authors [l-5]. 
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To tid the four characteristic roots of these equations in one space dimension we 
form the characteristic determinant of the system [13, p. 17m.l. We shall assume 
throughout for simplicity that the liquid is incompressible compared to the vapor 
(reasonable unless 01 is very small), so the characteristic roots p satisfy 

q-dp - ud2 + (1 - 4 P& - d2 - qw,2(p - hJ”(p - 4” = 0, (5) 

where cA2 = +,/aP. Multiplying by cV2 and reorganizing, we find there are two real 
roots, oie slightly less than U, - c, and one slightly greater than U, + c, . From the 
slope of this polynomial, any further real roots would have to lie between these two, 
but examination of the polynomial itself shows this to be impossible provided U, # uZ . 
Hence there must be a pair of complex conjugate roots. If U, , uz < c, , these complex 
roots are approximately 

uz i- l u, 
p= l+E *5;E - (%J - 4, 

where l 2 = (1 - a) pu/apl . 
The effect of complex characteristic velocities on finite-difference equations can be 

seen by reviewing a simple example: 

We assume that u, E, K are nonnegative constants. Let this equation be approximated 
by the difference equation 

(7) 

where subscript j refers to spatial node and n indicates time step. This difference 
equation uses donor-cell differencing for the explicit convective term and implicit 
treatment of the damping term KC+. Applying the von Neumann linear stability 
analysis method [14-161, we consider a Fourier component of 4, namely, exp(ikj dz), 
where k is a wave number. Note that k takes on the discrete values n/(n dz), n = 
1, 2,..., N, where N is the total number of intervals in the spatial mesh grid. From one 
time step to the next, the magnitude of this component will be found to be multiplied 
by 

A = (1 -I- Kdt1-l [l - %(I + E~)(I - exp(-&AZ))]. 

If I X I > 1, then the corresponding Fourier component of 4 can grow geometrically, 
while if 1 h, 1 < 1 for all k, the solution remains bounded for all time steps. 

When K = E = 0, the locus of values of X for all n is a sequence of points on a 
circle in the complex plane with radius u dt/dz centered at 1 - u dt/dz. The circle is 
tangent to the vertical at the point 1; if u dt/dz -C 1 it lies inside the unit circle. Figure 1 
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illustrates the locus of h, with points approaching the point 1 as n becomes large. Since 
with K = E = 0 the solutions of (6) are just traveling waves, approximate solutions 
should not have geometrically growing components, and 1 h 1 < 1 is required for 
stable numerical solution. This means u dt/dz < 1. 

Now if K = 0 but E # 0, then the previous locus is effectively dilated by (1 + G)li2 
and rotated by an angle arctan E, both about the point 1 in the complex plane. If E were 
negative, the result might still be inside the unit circle, but for any E > 0, no matter 
how small, there is an n large enough that the corresponding h will be tilted outside 
the unit circle (even if u dt/dz < 1). For such n, the corresponding Fourier mode 

FIG. 1. Locus of h for n = 1, 2, 3 ,.... 

will grow geometrically; the original differential equation also has such geometrically 
growing Fourier modes. Note, however, that the numerical solution may not have 
growing modes if there are only a few nodes. 

Finally if K > 0, then the above locus is further changed by a contraction toward 
the origin (1 + K dt)-l. Evidently, if K is large enough, the entire locus may lie inside 
the unit circle even for large n. 

This simple example, known to many researchers (Wendroff [17]), shows features 
we shall find for two-fluid equations. Donor-cell differencing of the convective term 
with ZJ dt/dz < 1 has a stabilizing effect on the highest-frequency modes even when 
the convecting velocity is complex. The destabilizing effect of the complex velocity on 
low-frequency modes may be compensated, for a given mesh size, by a large enough 
damping term. As the mesh is refined, n -co,dz+O,dt+O,andl+Kdt-+l, 
so the GnitedifZerence method must eventually give geometrically growing modes. 
With I( &AZ < 1, the first manifestation of this will be at wavelengths many times dz. 

The following analysis for the two-fluid equations leads to similar conclusions. The 
role of the damping term will be played by the momentum transfer between phases. 
An important result will be a physically based condition for well-behaved solutions 
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with the finite-difference method; this condition relates the momentum exchange term 
to the mesh size. 

In this paper we shall not refer to the term stability in the usual mathematical 
sense, which requires certain nice behavior uniformly as dz, dt --f 0. The two-fluid 
equations with complex characteristics cannot be stable in that sense. Referring back 
to the physical flow problem we are attempting to model, we expect that the two- 
fluid equations should be capable of describing steady flows; this would be impossible 
with geometrically growing modes. Thus our ad hoc definition of well-behaved 
solutions will be that for a given mesh; local linear stability analysis should give 
1 X / ,( 1 for all modes. 

TW~FLUID EQUATIONS WITHOUT EXCHANGE TERMS 

We shall analyze the behavior of certain finite-difference approximations to (l)-(4). 
These difference equations are partially implicit, in such a way that sonic propagation 
effects are treated implicitly, while convection phenomena are handled explicitly, so 
that the time step dt is limited by dt < min(dz/u, , dz/u,). This type of difference 
equation has been used by several authors [l-3]. A convenient spatial mesh has 
pressures and void fractions defined at integral modes j, while velocities U, , uz are 
defined at half-nodes j + a. We refer to old time values by superscript n, new time 
values by n + 1. The difference equations are 

(c?ij”“p;: - ai”p;,j)/At 

+ (~jn_lP~.dG~l,2 - ~‘P:,,u%,J~~ = 0, (8) 

((I - a;“) p;,;l - (1 - ai”) plfi)/At 

+ ((1 - 4-l) PL4%2 - (1 - ain) p22.j$%,,W = 0, (9) 

The divergence term in the mass equations and the convective term in the momentum 
equations involve donor-cell differencing, and the above equations are for U, , uz > 0. 
In this section we shall consider the case K = 0. 

To apply the von Neumann method of local linear stability analysis, we expand the 
differences above in terms of differences of four basic variables, say, pv , a, u, , uz . We 
then treat the coefficient of those individual differences as constant (hence “local 

5W33b8 
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linear”). Considering a Fourier mode leads to the amplification matrix (cf. [16, 
P. 701) 

4 - 1 + fi,> pa - 1 + &) h-4 qdk' Az 0 

0 -pr(h - 1 + 4) 0 X $ (1 - a) p&k’ 

X dt c AZ ’ 2ik’ 0 pvtx 1 + u”tJ - 0 

X dt c a&’ AZ ’ 0 0 PC0 - 1 + fit> 

7 (12) 

where the columns from left to right correspond to the variables pv , a:, u, , uz ; k is 
again the wavenumber, k = rr/n AZ, and we have abbreviated k’ = 2sin $k AZ, 
u’, = (u, At/Az)[l - exp(-ik AZ)], and z& = (~,/a,) u’, . The eigenvalues h of (12) 
satisfy 

X2Cn2[(h - 1 + q2 + (1 - 4 p,I(~PJo - 1 + a21 
+ (A - 1 + zQ”(A - 1 + z&)2 = 0, (13) 

where C, = (c, At/Az)(2 sin(n/2n)). 
First consider the high-frequency behavior. We note that the scheme (Q-o-(l) is 

particularly advantageous when At is nearly equal to the convective limit value 
min (AZ/U, , AZ/U& but much larger than AZ/C,, , in other words, U, , uz Q c, . This 
implies c, At/Az > 1, and for small n, C, > 1. Then (13) has two roots of magnitude 
roughly C;’ Q 1, and another two which approximately satisfy 

X - 1 + z& N fic(X - 1 + z&), 

where 

hence 

h E 1 - z&(1 f ieu,/uJ(l f ie)-l. 

This is the usual locus of points on a circle of radius uJ At/Az touching the point 1 in 
the complex plane, but tilted by an angle & arctan (~a&) about the point 1, then back 
through an angle 7 arctan E. The net dilation is bounded by 1 + 1 u,/uc I. Clearly 
points on this circle with small n (i.e., away from the point 1) need not be tilted outside 
the unit circle if a2 At/Az < 1 and U, At/Az < 1. We conclude that if the usual 
convective limit on the time step is obeyed, the highest-frequency modes (i.e., wave- 
lengths small multiples of AZ) should not grow geometrically, even for the ill-posed 
two-fluid problem without momentum exchange. 

Now turning to the low-frequency modes, consider (13) as n becomes large. Since 
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C, -+ 0 in the limit as n + co, we see that the roots of (13) tend toward h = 1 - u’, 
(twice) and h = 1 - zi, (twice). To be more precise, let h = 1 - zi + 6; we can 
approximate 6 for large IZ by rewriting (13) in terms of 6 and keeping only terms up to 
second order in 6. The resulting quadratic polynomial in 6 has roots 

6 - c2 -f iE(1 - (24, - UJ2/CVZ)1/2 
[(I - u”J(u”, - fir)] - 1 + 8 - (24, - z@/c,2 * 

Again using (S)-(1 1) it is appropriate to assume that 1 U, - uz / < c, , so 

h M (1 - a,> [ 1 - i(fi, - iiJ 2 E (++&)I. 

Since 1 1 - u’, 1 = 1 - 0(n-2) and is multiplied by a quantity having magnitude 
1 + 0(11-l), where O(n-l) is positive for one choice of the f above, one root h must 
lie outside the unit circle for large n. A similar result follows from a perturbation 
X = 1 - u”, + 6. Hence for (Q-o- 1) with K = 0, wavelengths with large n will be 
unstable. 

We remark that there are two interpretations of augmenting IV, the total number of 
mesh intervals, for this problem. One is adding physical length to the problem and 
holding dz fixed. However, since the equations with K = 0 are invariant under a 
uniform dilation of both space and time, another interpretation of augmenting N is 
keeping the total physical length tixed and shrinking dt and dz, i.e., refining the mesh. 

Our conclusions for the case K = 0 are that numerical calculations with the two- 
fluid difference equations (Q-o-( 1) and very few spatial nodes may have well-behaved 
solutions. As the mesh is refined, instabilities will appear, likely of wavelength many 
times dz. 

TWO-FLUID EQUATIONS WITH MOMENTUM EXCHANGE 

Now consider the finite-difference equations (8)-( 11) with K > 0. Note that in (10) 
and (11) the velocities in the momentum equation are treated implicitly, thus avoiding 
any upper limit on dr due to strong momentum coupling. The new amplification 
matrix differs from (12) only in the lower right corner 2 x 2 which becomes 

,%@(l + K> - 1 + E,) -+vK 
- APvK ,%(A - 1 + 6) + +vK 

where K = Kdt/p, , (Implicit treatment of velocities in the momentum exchange is 
desirable when K > 1.) The new characteristic polynomial thus obtained must again 
be analyzed to see if 1 h 1 < 1. 

First consider the high-frequency behavior and let n be small. Assuming K > 1 

(i.e., that implicit treatment of momentum exchange is very desirable), and also as 
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before that C, > 1, we find the characteristic polynomial has two roots of magnitude 
roughly C;l, one root of magnitude roughly ~-l, and one approximately equal to 
1 - (z& + &,)/(l + G), where again e2 = (1 - a) pv/apa . This is again inside the 
unit circle if dt does not exceed the convective limit. Note also that all four roots are 
inside the unit circle for small II and very small K, because we have skown this for 
K = 0 and the roots depend continuously on K. Although we have only argued for 
large K (the case most appropriate to implicit treatment of momentum exchange) and 
small K, it is reasonable to expect that wavelengths with small n do not grow for any 
value of K, since equations with an implicitly treated damping term should not have 
more tendency to growing modes than without. 

The low-frequency behavior comes again from examining the limiting case n + 00, 
and then considering a perturbation of low order in n-l. A remark about interpreting 
iV+ cc is in order here, as the nondifferential term K(u, - ur) makes a difference. If 
N means to refine the mesh, then ultimately K = Kdt/p, must go to zero. The term 
K(u, - UJ has a built-in physical length. We will start, however, by letting n -+ co 
but retaining K. This could be interpreted as refining the mesh and supposing that 
at some point all higher-order terms in (AZ)-l, (Lit)-’ are negligible except K; or it 
could be interpreted as holding dz fixed and adding physical length to the problem 
considered. 

The limiting equation for fixed K and n + cc is 

CA - 1 + %)(A - 1 + c,)[(Kh + h - I)(& - 1) + h&K) + AZ&K”] = 0. 

The two roots of the quadratic polynomial in brackets can be shown to be real, 
positive, and] strictly less than one. Hence for all n sufficiently large, the corresponding 
roots must lie within the unit circle. 

For the remaining two roots let h = 1 - fi, + 6 as before, substitute into the 
original polynomial equation, and keep only first order terms in 6. Furthermore, 
neglect higher-order terms in n-l. Finally, suppose that 

Pz 1 cz - ‘6~ 1 < 2&F. (14) 

With these assumptions the one remaining root is approximately 

which is inside the unit circle. The same result follows with h = 1 - z& + 6, implying 
that long-wavelength modes are well behaved. 

Condition (14) is the key to this long-wavelength behavior. It implies that momentum 
exchange must be larger than a certain minimum value in order to avoid geometrically 
growing long-wavelength modes. We will now show that this minimum momentum 
transfer relates to the mesh size in a physically meaningful way. 

First, note that (14) for large n is equivalent to 
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As remarked above, K contains a built-in physical length. For example, one form 
proposed for K, on the basis of analogy with flow of an isolated nondeforming bubble 
in liquid or droplet in vapor, is essentially ([1, 41) 

where r is the droplet or bubble radius and CD is a drag coefficient on the order of one. 
We then find that (14) reduces to 

n AZ > (f Jp Jdr. (16) 

In other words, the wavelength n dz will not have a growing mode if it is larger than a 
certain multiple of the radius of an individual bubble or droplet. 

To review, we have shown that a two-fluid calculation using difference equations 
(8 j( 11) will have nongrowing high-frequency components, while low-frequency 
components with large n and satisfying (15) for a given mesh will also be well behaved. 

These arguments do not guarantee there is no growing mode. One might think it 
plausible to require (15) down to II = 1 to cover the gap between low and high fre- 
quencies, but of course (15) was used specifically for large n. We have shown that, 
provided K LIZ is large enough, momentum transfer stabilizes long wavelengths which 
could otherwise have geometrically growing modes. 

NUMBRICAL EXAMPLES 

Results of many calculations with schemes similar to (8)-(11) have shown that in 
fact they appear to be well behaved at all wavelengths (that is no geometrically 
growing modes) in a large number of practical cases. Furthermore, if K is reduced, 
growing oscillations of long wavelength may appear. 

We have carried out some trial calculations to illustrate this, choosing as an example 
the flow of a steam-water mixture in a horizontal 20-mm-diameter tube, including 
wall friction and a momentum exchange law proposed for annular flow (Wallis 
[18, p. 3211). Although we used the equations of state of liquid water and steam, 
we assumed no phase change. Boundary conditions were 01 = 0.5, P = 150.1 bars, 
and saturation temperatures at the inlet, and P = 150 bars at the outlet. The transient 
calculation began from initial conditions of constant 01, Tz , TV equal to the inlet 
values, and U, = u1 and G = ap,u, + (1 - LX) pzuz = lo3 kg/m2/sec. Calculations 
were performed for a tube 15 mm long with 5, 10, 15, 25, 50, and 75 equal steps 
between boundary pressure points. The time step was 0.12 msec with five space steps, 
and proportional to LIZ for the other cases. Table I shows the values of G at the inlet 
after 6 msec. The final column gives the slope between successive data points in a 
plot of G(t = 6 msec) versus dz. 

We observe that for a first-order accurate approximation to a well-posed problem, 
we would expect the figures in the slope column to tend toward a constant value as the 
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TABLE I 

A sample two-fluid calculation 

Number of 
nodes 

Mass flow rate 
G after 6 msec 

Slope of G versus AZ 
(reiative units) 

5 3338.598171 
10 3338.891851 I== 1.ooo 

15 3338.988149 I= 0.984 

25 3339.064757 I== 0.978 

50 3339.122022 I== 0.975 

75 3339.143324 I== 1.088 

number of nodes increases. In fact, the slopes decrease slightly in the first four instances, 
which would imply slightly less than first-order convergences, With 75 nodes, this 
trend is clearly broken. In fact, this calculation showed the first signs of a geometri- 
cally growing oscillation. 

By substituting the value used for K into (15) above and taking LIZ = 15 mm/75 = 
0.2 mm, we would find equality in (15) with it 1: 150. In other words, using (15) with 
n = 1 as a criterion for AZ would in this case be conservative by a factor of 150. We 
also note that in this case the smallest well-behaved mesh spacing is more than 50 times 
smaller than the tube diameter. 

We have shown that numerical calculation with a two-fluid finite-difference model 
of two-phase flow can be well-behaved provided there is sufficient momentum transfer 
between phases, and the spatial mesh is not too fine. This is in spite of the fact that 
the two-fluid differential equations have complex characteristic roots, so that the 
continuous initial-value problem is ill-posed, and calculation with a sufficiently fine 
mesh must be unstable. Moreover, we have given a mesh size criterion with a physical 
interpretation: for momentum exchange models based on bubble or droplet flow, the 
critical mesh size is a multiple of the bubble or droplet radius. In other words, approxi- 
mate calculations can be well behaved provided one does not attempt to resolve 
phenomena finer than the scale implied in the momentum transfer law. This is physical- 
ly reasonable, since the two-fluid model in question is intended to approximate bubble 
or droplet regime flow, for example, by ignoring fluctuations caused by an individual 
bubble or droplet. Thus for coarse modeling of two-phase flow, the model is mathe- 
matically ill-posed, but approximate calculation is well behaved (in our ad hoc sense) 
if one stays on the appropriate scale. 

On the other hand, in the case of no momentum transfer (e.g., modeling separated 
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flow), variation in void fraction refers to a shifting liquid-vapor contact surface. 
Any approximate solution allowing void fraction to vary is of necessity a fine-scale 
resolution when K = 0. in this case, a well-posed problem is obtained by including 
the effect of surface tension (Ramshaw and Trapp [lo]). The same might, in principle, 
be done for other flow regimes if very fine resolution were demanded, and all liquid- 
vapor interfaces could be followed in detail. Thus for fine modeling, the appropriate 
model is different, mathematically well-posed as an initial value problem, and describes 
the physical Helmholtz instability. 

The conclusions seem to suggest using the two-fluid model (l)-(4) when coarse 
modeling is appropriate, in spite of ill-posedness. However, there are reservations. 
One has to do with the nature of the instability when the mesh becomes too fine. 
With the numerical scheme considered, instability associated with complex charac- 
teristics will not be the 2 LIZ wavelength growing oscillation of purely numerical 
instability. In a complex, realistic transient calculation, a longer-wavelength instability 
may have significant effects without its presence being obvious. 

Furthermore, our analysis merely suggests reasonable physical limits on the appli- 
cability of Eqs. (l)-(4). Whether they, in fact, model reality is a question for confronta- 
tion with experiments. 

It would be interesting to have a numerical method which exhibits a readily apparent 
high-frequency instability when K dz becomes too small. In fact, the method proposed 
by Stewart [4] was found by numerical experiment to have this property, although 
the reason for this could not be clearly discerned by analysis. 
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